Giao tuyến của hai mặt phẳng có chứa yếu tố song song

Tìm giao tuyến của hai mặt phẳng, xác định thiết diện tạo bởi mặt phẳng có yếu tố song song.

Giao tuyến của hai mặt phẳng có yếu tố song song

Phương pháp giải
Bước 1. Tìm một điểm chung của hai mặt phẳng. 
Bước 2. Áp dụng tính chất ii) Nếu đường thẳng d song song với mặt phẳng (P) thì mọi mặt phẳng (Q) chứa d mà cắt (P) thì cắt theo giao tuyến song song với d.
Suy ra giao tuyến sẽ là đường thẳng qua điểm chung và song song với đường thẳng ấy.

Xác định thiết diện

Phương pháp giải 
Tìm phương của giao tuyến. Từ đó xác định thiết diện của hình chóp tạo bởi mặt phẳng song song với một hoặc hai đường thẳng cho trước.
Ví dụ. Cho hình chóp S.ABCD, có đáy là hình thang với đáy lớn AB. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB.
a) Tìm giao tuyến của (SAB) và (IJG).
b) Xác định thiết diện của hình chóp với mặt phẳng (IJG). Thiết diện là hình gì? Tìm điều kiện đối với AB và CD để thiết diện là hình bình hành.
Giải
Bài tập đề nghị
Bài 1. Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi I, J lần lượt là trọng tâm của các tam giác SAB, SAD. M là trung điểm của CD. Xác định thiết diện của hình chóp với mặt phẳng (IJM).
Bài 2. Cho hình chóp S.ABCD, có đáy là hình thang với các đáy AD = a, BC = b. Gọi I, J lần lượt là trọng tâm các tam giác SAD, SBC.
a) Tìm đoạn giao tuyến của (ADJ) với mặt (SBC) và đoạn giao tuyến của (BCI) với mặt (SAD).
b) Tìm độ dài đoạn giao tuyến của hai mặt phẳng (ADJ) và (BCI) giới hạn bởi hai mặt phẳng (SAB) và (SCD).
Đáp số: b) $\frac{2}{5}$ (a+b).
Bài 3. Cho tứ diện đều ABCD, cạnh a. Gọi I, J lần lượt là trung điểm của AC, BC. Gọi K là một điểm trên cạnh BD với KB = 2KD.
a) Xác định thiết diện của tứ diện với mặt phẳng (IJK). Chứng minh thiết diện là hình thang cân.
b) Tính diện tích thiết diện đó.
Bài 4. Cho hình chóp S.ABCD. M, N là hai điểm trên AB, CD. Mặt phẳng (P) qua MN và song song với SA.
a) Tìm các giao tuyến của (P) với (SAB) và (SAC).
b) Xác định thiết diện của hình chóp với mặt phẳng (P).
c) Tìm điều kiện của MN để thiết diện là hình thang.
Hướng dẫn: c) MN // BC
Bài 5. Cho hình chóp S.ABCD. M, N là hai điểm bất kì trên SB, CD. Mặt phẳng (P) qua MN và song song với SC.
a) Tìm các giao tuyến của (P) với các mặt phẳng (SBC), (SCD), (SAC).
b) Xác định thiết diện của hình chóp với mặt phẳng (P).
Next Post Previous Post
No Comment
Add Comment
comment url