Các hàm số lượng giác - Toán 11
HÀM SỐ LƯỢNG GIÁC
Sau bài viết nhỏ này, các em phải thuộc được các tính chất cơ bản của các hàm số lượng giác $\sin x$, $\cos x$, $\tan x$, $\cot x$Các thông tin cụ thể nằm trong bảng sau
$y=\sin x$ | $y=\cos x$ | $y=\tan x$ | $y=\cot x$ |
---|---|---|---|
TXĐ: $D=\mathbb{R}$ | TXĐ: $D=\mathbb{R}$ | TXĐ: $D=\mathbb{R}\backslash\{\frac{\pi}{2}+k\pi\}$ | TXĐ: $D=\mathbb{R}\backslash\{k\pi\}$ |
TGT: $[-1;1]$ | TGT: $[-1;1]$ | TGT: $\mathbb{R}$ | TGT: $\mathbb{R}$ |
Hảm số lẻ | Hàm số chẵn | Hàm số lẻ | Hàm số lẻ |
$T=2\pi$ | $T=2\pi$ | $T=\pi$ | $T=\pi$ |
Đồ thị đối xứng qua gốc toạ độ | Đồ thị đối xứng qua trục $Oy$ | Đồ thị đối xứng qua gốc toạ độ | Đồ thị đối xứng qua gốc toạ độ |
Lưu ý.
+) Hàm $\displaystyle \tan x=\frac{\sin x}{\cos x}$
+) Hàm $\displaystyle \cot x=\frac{\cos x}{\sin x}$
CHU KỲ CỦA MỘT HÀM SỐ LƯỢNG GIÁC
Chu kỳ là gì?
Một hàm số $y=f(x)$ xác định trên $D$, hàm số $y=f(x)$ được gọi là tuần hoàn nếu có một số $T\ne 0$ thoả mọi $x\in D$ thì $x+T,x-T\in D$ và $f(x+T)=f(x)$
Số $T$ nhỏ nhất thoả mãn điều kiện phía trên người ta gọi là chu kỳ của hàm số $y=f(x)$
1. Chu kỳ của các hàm số lượng giác cơ bản
+) Hàm số $y=\sin x, y=\cos x$ có chu kỳ $T=2\pi$
+) Hàm số $y=\tan x,y=\cot x$ có chu kỳ $T=\pi$
2. Mở rộng
+) Hàm số $y=\sin(ax+b)$ có chu kỳ $T=\dfrac{2\pi}{|a|}$
+) Hàm số $y=\cos(ax+b)$ có chu kỳ $T=\dfrac{2\pi}{|a|}$
+) Hàm số $y=\tan(ax+b)$ có chu kỳ $T=\dfrac{\pi}{|a|}$
+) Hàm số $y=\cot(ax+b)$ có chu kỳ $T=\dfrac{\pi}{|a|}$
Ví dụ. Hàm số $y=\cos(3x+\pi)$ có chu kỳ là bao nhiêu?
Giải
Áp dụng mở rộng phía trên ta có chu kỳ của hàm số $y=\cos(3x+\pi)$ là: $T=\dfrac{2\pi}{|3|}=\dfrac{2\pi}{3}$
Ví dụ. Hàm số $\displaystyle y=-2\sin\left(\frac{x}{2}+\frac{\pi}{2}\right)$ có chu kỳ bằng bao nhiêu?
Giải
Dễ thấy $a=\dfrac{1}{2}$. Áp dụng mở rộng trên ta có chu kỳ: $T=\dfrac{2\pi}{|\frac{1}{2}|}=4\pi$
3. Chu kỳ hàm tổng
Ví dụ.
Hàm số $y=\sin 2x+\cos 3x$ có chu kỳ là bao nhiêu
Giải
+) Dễ thấy hàm số $y=\sin 2x$ có chu kỳ $T_1=\pi$
+) Hàm số $y=\cos 3x$ có chu kỳ $T_2=\dfrac{2\pi}{3}$
Vậy hàm số $y=\sin 2x+\cos 3x$ có chu kỳ $T=2\pi$
Tags: #Toán 11