Phương pháp cô lập tham số - Toán 12

PHƯƠNG PHÁP CÔ LẬP THAM SỐ $m$

Một trong những dạng bài toán khá hay gặp trong phần đơn điệu của hàm số là bài toán tìm tham số m để hàm số đồng biến, nghịch biến trên một khoảng cho trước. Có nhiều kỹ thuật để xử lý và trong bài viết này sẽ nói đến kỹ thuật cô lập tham số $m$

Toán 12

1. Lý thuyết

Bài toán tổng quát

Cho hàm số $f(x,m)$ (với $m$ là tham số). Tìm giá trị của tham số $m$ để hàm số đồng biến, nghịch biến trên $D$

Ta cần phải nhớ tính chất sau

$\displaystyle g(m)\ge f(x),\forall x\in D \Leftrightarrow m\ge \max_D f(x)$

$\displaystyle g(m)\le f(x),\forall x\in D \Leftrightarrow m\le \min_D f(x)$


2. Ví dụ cho hàm bậc 3

Ví dụ 1. Tìm tất cả các giá trị của $m$ để hàm số $\displaystyle y=\frac{1}{3}{{x}^{3}}+(m-1){{x}^{2}}+(2m-3)x-\frac{2}{3}$ đồng biến trên $\left( 1;+\infty \right)$

Giải

$y'={{x}^{2}}+2(m-1)x+(2m-3)$

Yêu cầu bài toán $\Leftrightarrow y'\ge 0,\forall x\in \left( 1;+\infty \right)$

$\displaystyle \Leftrightarrow {{x}^{2}}+2(m-1)x+(2m-3)\ge 0,\forall x\in \left( 1;+\infty \right)$

Bây giờ ta sẽ sử dụng kỹ thuật cô lập $m$, tức là đưa toàn bộ $m$ về một vế, vế còn lại là chứa $x$

$\displaystyle \Leftrightarrow m\ge \frac{-{{x}^{2}}+2x+3}{2x+2},\forall x\in \left( 1;+\infty \right)$

$\displaystyle \Leftrightarrow m\ge \underset{\left[ 1;+\infty \right)}{\mathop{\max }}\,\left( \frac{-{{x}^{2}}+2x+3}{2x+2} \right)=1$

Vậy $m\ge 1$.


3. Ví dụ cho hàm bậc 4 trùng phương

Ví dụ 2. Tìm các giá trị của tham số $m$ để hàm số $y={{x}^{4}}-2m{{x}^{2}}-3m+1$ đồng biến trên $(1;2)$

Giải

$y'=4{{x}^{3}}-4mx$

Yêu cầu bài toán $\Leftrightarrow y'\ge 0,\forall x\in (1;2)$

$\Leftrightarrow 4{{x}^{3}}-4mx\ge 0,\forall x\in (1;2)$

Bây giờ ta sử dụng kỹ thuật cô lập $m$, lưu ý là ta có thể rút gọn bớt $x$ được, vì $x\in (1;2)$ luôn dương

$\Leftrightarrow m\le {{x}^{2}},\forall x\in (1;2)$

$\displaystyle \Leftrightarrow m\le \min_{[1;2]} \left( x^2 \right)=1$

Vậy $m\le 1$.

Tham khảo thêm một số bài viết:

  • Tính đơn điệu của hàm số
  • Cực trị của hàm số
  • Xét tính đơn điệu của hàm số bậc 3 có tham số m
  • Bài tập chủ đề Khảo sát sự biến thiên, vẽ đồ thị hàm số

Tags: #Toán 12

Next Post Previous Post
No Comment
Add Comment
comment url